
CHANNEL-BASED ARCHITECTURE FOR DYNAMICALLY

RECONFIGURABLE NETWORKS

Jeroen Valk a Jan Peter Larsen a Peet van Tooren a

Adriaan ter Mors a

a Almende B.V., Westerstraat 50 3016 DJ Rotterdam

Abstract

Agent technology is often suggested as a tool for developing software that is more adaptive
in the face of changes in its environment. In agent-based approaches, complex automated
systems are built from components that communicate with each other. To enable adaptive
behaviour, both the components themselves and the communication architecture should be
easily changeable. This paper presents the common hybrid agent platform (CHAP)1 that
enables dynamic reconfiguration of networks composed of small agents that may be changing
themselves.

1 Introduction

Lack of adaptivity in automated systems has been a serious problem in the software industry over the
years. Typical industrial applications consist of many lines of code which are difficult to understand.
When a new project is started, and software is developed from scratch, knowledge about the
datastructures and control flow is sufficient to build a working program. During the lifetime of the
program, however, in-depth knowledge about the software may fade away rapidly. Particularly, in
a changing environment, the demand for software changes may be high. To fulfill this demand,
developers are often faced with a difficult (if not impossible) task: to change incomprehensible lines
of codes.

One way to resolve the lack of adaptivity in software is to build systems that can more or less
automatically adapt based on evaluation of its behavior with respect to the software’s intentions.
Information that is useful in this respect might be, user preferences, performance indicators, or feed-
back. Many of these approaches focus on automatic reconfiguration without human intervention.
For example, in a DARPA Broad Agency Announcement, self-adaptive software is roughly defined
as follows: “Self-adaptive software evaluates its own behavior and changes behavior when the eval-
uation indicates that it is not accomplishing what the software is intended to do, or when better
functionality or performance is possible.” The idea here is that the ability to adapt is programmed
into the system and will manifest itself at runtime without any human intervention.

The adaptivity problem in software allows an alternative approach as well: to implement soft-
ware in such a way that only little knowledge about the complete system is required to make small
changes in its functionality. This is the idea of compositionality, which has been exploited in many
programming paradigms. An interesting paradigm in this respect is that of agent-oriented pro-
gramming [4]. In this newly emerging paradigm, components are no longer static, but they have an
ongoing interaction with the environment. The idea is that systems based on a dynamically recon-
figurable network of components are easier to comprehend and adapt locally. In existing software,
however, components are usually of a monolithic nature, which cannot be understood in terms of
interactions of simple functionalities. We therefore aim to (re)implement software as a dynami-
cally reconfigurable network of simple components and check whether this software is indeed more
adaptive.

1A demo of this system will be shown at the conference.



Traditional software development techniques and industry standards to connect components in-
clude streams, (secure) sockets, or HTTP; these are all standardized ways to let independent com-
ponents (called threads or processes) communicate over so-called communication channels which
consist of two endpoint called connectors which are linked in pairs: data that is written on a con-
nector can be read (by another component) from the other endpoint of the channel. However,
existing industrial standards provide little or no support for dynamic reconfiguration. Sockets, for
example, are typically designed for building pre-wired applications with hardly any support for the
dynamic reconfiguration of the communication infrastructure.

A more promising area for our experiments can be found in the realm of formal methods and
verification techniques. A variety of formalism has been developed: e.g., temporal logic, process
algebra, MAUD, CREOL, REO [2, 3, 1]. In the face of dynamically reconfigurable networks,
REO is an interesting framework, because its key concept is that of a so-called mobile channel.
A mobile channel is a communication channel that can be created and destroyed, and connectors
can be passed on from one component to another. All these channel manipulation operations can
be performed while the system is running without affecting the integrity of the collective system
state. Unfortunately, however, a development and execution environment for REO is still missing.
To bridge this gap, we suggest to use an architecture for channel manipulation that has been
developed at Almende. The idea is to use channel manipulation offered by the architecture as a
basis, and to build REO primitives, i.e., nodes and channels, on top of this architecture.

The outline of this paper is as follows. First, we will briefly introduce the REO framework.
Next, we will present our architecture and suggest how it could be useful for REO. Next, we will
describe some applications for which the architecture could provide solutions. We conclude the
paper with suggestions for future work on the architecture.

2 The REO framework

In [1], Arbab et al. suggest a formal language for the exogeneous coordination of components via
so-called mobile channels. In this channel-based language, a component is conceived as a flow of
control which communicates with its environment (which just consists of other components in the
system) using communication channels. Communication channels consist of two endpoints called
connectors which are linked in pairs. Data that is written on a connector can be read (by another
component) from the other endpoint of the channel.

An important application of mobile channels is automated configuration of a communication
network. For example, we can have three components A, B, and C where A decides (without human
intervention) that B and C have to communicate with each other. Then A can create a channel
and pass one connector to B and the other connector to C. Existing communication standards do
not provide support for building components which manipulate communication channels in the way
described above.

Another interesting feature of REO is that it considers channels in a very general sense. That
is, REO does not specify the behavior of channels, but only the connectivity. A REO circuit is just
a kind of directed graph with nodes and arcs; only the direction of arcs is a bit peculiar. That is,
besides the normal directed arcs that run from one endpoint to the other, we have (i) arcs that
run from both endpoints into the “nothing”, and (ii) arcs that run from the “nothing” into both
endpoints. In a graph, we can distinguish three kinds of nodes: (i) nodes that have only incoming
arcs, (ii) nodes that have only outgoing arcs, and (iii) nodes that have both. In REO,

(i) a node with only incoming arcs is called an output node;

(ii) a node with only outgoing arcs is called an input node;

(iii) all other nodes are called mixed nodes.

Only the behavior of nodes is fixed in REO, but channels are allowed to vary widely. Probably, any
kind of useful channel can be defined in REO and all these channels can be used within a single
circuit. This allows us to build very rich and powerful circuits. For example, it allows the formal
specification of circuits that consist of both synchronous and asynchronous channels. Most existing
formalisms usually choose either one of these channel types.



angel

bishopsecretary

abbess

apostle

secretary

nun

nun

agent

agent

royal nun

convent

Figure 1: a simple monastery.

We have now discussed the static characteristics of a REO circuit. In the next section, we will
describe how to build up and change such circuits in a distributed and dynamic way using our
channel manipulation architecture.

3 Architecture for Channel Manipulation

The basis of the channel-manipulation architecture which we suggest is an agent-based platform
called CHAP (Common Hybrid Agent Platform). In CHAP, channel-manipulation primitives are
offered in a distributed way using a large number of behavioral components2. These components for
channel manipulation are called nuns3. A nun provides a kind of common interface that allows other
components to create, transfer, and hangup communication channels. In this way, communication is
possible without having to know any hardware specific details about the communication technology
that is used. A nun can offer channel-manipulation functionality to any component in CHAP, but
it can only service one component at a time. The functionality is offered by means of messages
passed on a communication channel between the nun and the component that is being served. Note
that this is similar to a traditional client/server model. The difference is that in CHAP there is a
very large number of clients and servers (nuns) that operate concurrently.

To coordinate inter-nun communication, collections of nuns are under the supervision of a so-
called abbess. Collectively, an abbess together with all her nuns is called a convent. The abbess
registers the nuns in the convent and makes sure the nuns can find each other when needed.
Additionally, the abess provides an interface between the nuns and more low level components
in CHAP which offer CPU and communication management. In this respect, CHAP is a layered
architure where the convent is build on top of a lower layer called a religious order. In turn,
agent-based applications that use channel manipulation can be built on top of the convent layer.

In the current version of CHAP, a (religious) order consists of three components: (i) a bishop
that interfaces with the abbess and nuns, (ii) an angel that is responsible for creating new threads
of execution, and (iii) an apostle that creates communication channels. An order together with a
convent on top of it is called a monastery. Figure 1 shows the most recent version of a monastery
used in CHAP where the components are structured hierarchically.

2In CHAP, each behavioral component is represented by a single thread of execution.
3As a methaphor, we use names of members of a religious order to identify the various roles of the components

within CHAP.



At startup, the CHAP architecture bootstraps from the angel. That is, to start CHAP just one
angel has to be started. The angel may then may start one or more monasteries on a machine where
no CHAP components are running yet. A typical angel would be responsible for starting two types
of components: bishops and apostles. Apostles are the providers of communication channels where
different apostles could provide different types of communication channels. Bishops are responsible
for deploying one or more abbesses which in turn found so-called convents consisting of nuns.
Currently, we use a very simple lower layer where the angel starts one apostle and one bishop, and
the bishop deploys one abbess. The bishop can best be viewed as a kind of server that can handle
requests for component and channel creation. The bishop does not handle these requests itself, but
(i) uses the angel to spawn new threads whenever a request for component creation arrives, and
(ii) uses the apostle to create a new channels upon request.

The convent not only serves the components in the application in application layers on top of
the monastery, but also the bishop in the first layer of the monastery. The bishop is served by what
we call a Royal nun which offers the same interface as the other nuns in the convent. The bishop
uses the Royal nun to bootstrap the agent application.

Nuns extend the functionality of the bishop: i.e., they can be used to create new agents and to
request communication channels. Additionally, the nuns can be used to connect components with
each other. To do so, components must first be registered in the convent by means of a register
request to a nun. The nun then sends back an identifier which can be used to connect components
with each other. For example, consider the simple application with three agents A, B, and C where
A wants to connect B with C. If A creates the components B and C itself then it could first register
B and C at the convent. Component A can do this by sending two register request to its own nun
to get two identifiers. Then it can send these two identifiers in a connect request to its own nun.
Upon registration, components B and C have been assigned a separate nun in the convent and they
can use these nuns to inquire for incoming connectors. This inquiry will provide B and C with the
two endpoints of a channel, because of the connect request issued by component A.

In a typical agent-based application, more that one monastery may be involved. These monas-
teries can be running on different machines which are connected by a physical network. Within
a monastery, the communication channels are homogenous. The communication channels of dif-
ferent monasteries may be of a completely different type however. This allows the application to
use different communication technologies in a transparent way. To use different types of channels
the components should register at multiple convents. This means that in a typical agent-based
application several nuns may serve a single component.

To provide an idea of how CHAP works in detail, let us give an illustration of a communication
flow in the monastery. In the simple example we discussed earlier, agent A first creates and registers
components B and C. Figure 2 shows the request that will be exchanged if agent A (the bootstrap
agent) creates a new component and registers this component at the convent. First, the bootstrap
agent creates a new agent by sending an agent request to its nun. The nun cannot handle this
request so it delegates the request to the abbess. The abbess, in turn, delegates the request to the
bishop. The result of the two subsequent delegate requests is that the agent talks directly with
the bishop. The bishop gets an agent type from the bootstrap agent, sends a channel request to
obtain a communication channel from the apostle, and sends a baptize request to create an agent of
the specified type. Note that one endpoint of the channel received from the apostle is used by the
angel to make an initial connection to the newly created agent. Next, the bootstrap agent issues
a register request to register the new component at the convent. Along with the register request
the bootstrap agent sends the connector to its nun to which the newly created agent is connected.
The nun then gets a new identifier for the agent by sending a getid request to the abbess. The
identifier obtained from the abbess is sent to the bootstrap agent. Finally, the nun creates a new
nun and informs this new new nun about its identifier and the connector on which this new nun
should listen.

4 Applications

We identify several domains were adaptivity in software based on dynamic reconfigurable commu-
nication between components can have far-reaching consequences. A basic version of CHAP has
already been commercially implemented in some industrial sectors. Scheduling, matching, and call



req: agent

req: delegate

req: delegate

bootstrap nun abbess bishop

att: accept

agent type

req: channel

recv connector

bye bye

send connector

req: baptize

agent type

send connector

bye bye

recv connector

bye bye

req: attitude

req: attitude

bye bye

bye bye

req: register

req: delegate

req: getid

identifier

bye bye

req: attitude

bye bye

type nun

recv connector

identifier

bye bye

req: delegate

req: delegate

req: agent

recv connector

bye bye

new nunapostle angel

Figure 2: message flow generated by the bootstrap agent.



routing are often the main functionalities of the provided solutions. These implementations focus
on connecting humans through adaptive matching mechanisms. Every human user is represented
by an agent that can be told or even learn (through feedback) the user’s individual preferences.
These system are used to solve communication bottlenecks which occur when organizations need
to communicate very last-minute with a lot of people, e.g. in (human) resource planning, or in
knowledge management.

In these implementations, it is mainly the components themselves that change their behavior
according to the needs of the environment. The full potential of dynamic reconfigurable networks
becomes clear when very large numbers of small components make up the system. In these situa-
tions, only through communication can the system adapt to its designed functionality. A typical
domain where our proposed architecture could be essential is within complex logistic planning pro-
cesses, especially when the solution has to be found through distributed communication processes
between many heterogeneous actors.

Concurrent development of applications for logistical purposes has started by using the CHAP
architecture to develop an agent-based solution to tackle large-scale complex logistical processes.
Potential application areas that have already been identified are multi-modal transportation, and
ground handling in airports (multi-actor networks). A distributed model of stakeholders at a
micro level (packages, trucks, etc.) and the organization of communication between them offers
possibilities to find incremental solutions for last-minute incidents.

CHAP offers a perfect architecture to develop such a distributed network of actors. For a feasible
industrial agent-based implementation, however, large-scale reliable solutions are required due to
the vast amount of interacting agents needed for these complex coordination processes. The same
is true for many other potential application areas. Further development of CHAP will therefore
focus mainly on robustness and scalability.

5 Future Work

We identified the following of attributes which are important as future work.

Trust and Consensus. In a system where all components can be trusted , e.g. because all com-
ponents have been developed centrally, the effects of interactions will be as intended by the
designer. But if third parties are allowed to change components or add components to the sys-
tem, consensus with regard to the meaning of a message may no longer be guaranteed. This
triggers a need for agents which can deal effectively with undefined semantics. For example,
think of agents that delegate requests to others which they don t understand.

Robustness and Redundancy. To obtain a robust system that can achieve certain performance
guarantees, we think of techniques that provide redundancy (i.e., having more components
capable of delivering the same functionality).

Failure detection. Even in a system where all components can understand each other perfectly,
faulty behavior may be the result of physical limitations of the hardware on which the software
is run. In most automated systems, physical limitations are often detected by a human
operator. The CHAP architure must be able to detect automatically if undesired system
behavior is due to lack of resources and take appropriate actions. These actions could be (i)
to relocate processes on the physical hardware, or (ii) to limit resource consumption if agents
can function appropriately without these resources.

References

[1] Farhad Arbab. Abstract behavior types: a foundation model for components and their compo-
sition. Sci. Comput. Program., 55(1-3):3–52, 2005.

[2] J. A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information
and Control, 1984.



[3] Einar Broch Johnsen and Olaf Owe. An asynchronous communication model for distributed
concurrent objects. In Proc. 2nd Intl. Conf. on Software Engineering and Formal Methods
(SEFM’04), pages 188–197. IEEE Computer Society Press, September 2004.

[4] Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 1993.


